Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture
نویسندگان
چکیده
BACKGROUND Despite the fact that many reports deal with glycolysis in Lactococcus lactis, there is not much information on the regulation of uptake of glucose itself. The aim of the present work was to investigate the effect of the glucose level on its specific uptake rate. RESULTS Studies on aeration levels in pH controlled L. lactis spp. lactis batch cultures on glucose (55 mM) showed that product formation is extremely homolactic and the highest yield of lactate on glucose is obtained under microaerobic conditions (5% dissolved oxygen). Microaerobic conditions were therefore applied in experiments carried out to investigate the regulation of the uptake of glucose. The tool of glucostat fed-batch culture was employed, in which glucose was added at a rate suitable to maintain a stable concentration throughout the runs with glucose concentration ranging from 13.75 to 555 mM. The glucostat experiments showed that the concentration of glucose influences its specific uptake rate and consequently the glycolytic flux, as well as the fermentation pattern. The highest specific activities of the key glycolytic enzymes PFK, PYK and the LDH were obtained at 55 mM glucose, the area of the highest observed glycolytic flux. Reduction of the glycolytic flux by 55% in the 277 mM glucostat corresponded to an almost identical reduction in PFK activity, indicating a certain controlling influence of this enzyme on the flux, through the glucose effect. CONCLUSION Determination of intracellular metabolites' pools showed that FBP cannot be regarded as a direct regulator of product formation, since almost identical concentrations were obtained at both low (13.75 mM) and high (138 mM) glucose levels, at which neither the glucose uptake rates and the glycolytic flux, nor the fermentation patterns were similar (mixed acids vs homolactic, respectively). Glucostat data showed instead that the control of the flux through the glycolytic pathway under the examined conditions, resides to a large extent in processes outside the pathway, like the ATP consuming reactions and glucose transport. A regulation mechanism is proposed governed by the energy state of the cell by which L. lactis can handle the glycolytic flux through the allosteric properties of key enzymes, with PFK having a significant influence on the control.
منابع مشابه
Minimal Requirements for Exponential Growth of Lactococcus lactis.
A minimal growth medium containing glucose, acetate, vitamins, and eight amino acids allowed for growth of Lactococcus lactis subsp. lactis, with a specific growth rate in batch culture of mu = 0.3 h. With 19 amino acids added, the growth rate increased to mu = 0.7 h and the exponential growth phase proceeded until high cell concentrations were reached. We show that morpholinepropanesulfonic ac...
متن کاملMolecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures.
The gene encoding the dextransucrase DsrD from the industrial strain Leuconostoc mesenteroides Lcc4 was isolated by PCR using degenerate primers recognizing conserved regions present in other dextransucrase-encoding genes from Leuconostoc spp. and Southern blot analyses on total genomic DNA. N-terminal sequence analysis of the active protein recovered in the culture showed that the secreted pro...
متن کاملOptimization of cell mass production of the probiotic strain Lactococcus lactis in batch and fed-bach culture in pilot scale levels
Lactococcus lactis is highly efficient probiotics microorganism with wide range of benefits on human health. This study was conducted to design and establish industrial platform for high cell density cultivation of this novel probiotic strain, L. lactis (WICC-B25). During bioreactor cultivation of lactic acid bacteria in industrial scale, there are two main problems during process namely: low c...
متن کاملCitrate Fermentation by Lactococcus and Leuconostoc spp.
Citrate and lactose fermentation are subject to the same metabolic regulation. In both processes, pyruvate is the key intermediate. Lactococcus lactis subsp. lactis biovar diacetylactis homofermentatively converted pyruvate to lactate at high dilution (growth) rates, low pH, and high lactose concentrations. Mixed-acid fermentation with formate, ethanol, and acetate as products was observed unde...
متن کاملControl of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
During batch growth of Lactococcus lactis subsp. lactis NCDO 2118 on various sugars, the shift from homolactic to mixed-acid metabolism was directly dependent on the sugar consumption rate. This orientation of pyruvate metabolism was related to the flux-controlling activity of glyceraldehyde-3-phosphate dehydrogenase under conditions of high glycolytic flux on glucose due to the NADH/NAD+ ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbial Cell Factories
دوره 6 شماره
صفحات -
تاریخ انتشار 2007